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Abstract In recent years, stochastic parametrizations have been ubiquitous in
modelling uncertainty in fluid dynamics models. One source of model uncertainty
comes from the coarse graining of the fine-scale data and is in common usage in
computational simulations at coarser scales. In this paper, we look at two such
stochastic parametrizations: the Stochastic Advection by Lie Transport (SALT)
parametrization introduced by Holm (Proc A 471(2176):20140963, 19, 2015) and
the Location Uncertainty (LU) parametrization introduced by Mémin (Geophys
Astrophys Fluid Dyn 108(2):119–146, 2014). Whilst both parametrizations are
available for full-scale models, we study their reduced order versions obtained
by projecting them on a complex vector Fourier mode triad of eigenfunctions
of the curl. Remarkably, these two parametrizations lead to the same reduced
order model, which we term the helicity-preserving stochastic triad (HST). This
reduced order model is then compared with an alternative model which preserves
the energy of the system, and which is termed the energy preserving stochastic
triad (EST). These low-dimensional models are ideal benchmark models for testing
new Data Assimilation algorithms: they are easy to implement, exhibit diverse
behaviours depending on the choice of the coefficients and come with natural
physical properties such as the conservation of energy and helicity.
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1 Introduction

The introduction of stochasticity in fluid dynamics has recently been the subject
of intense research effort. This approach involves using random processes to
model, for example, unresolved scales, or to take into account neglected physical
effects. A stochastic formulation for the fluid flow introduces a probabilistic basis
for modelling unresolved scales. This is different from the deterministic causal
modelling which is difficult to achieve in practice due, for instance, to unknown
initial conditions. In addition, some phenomena such as energy backscattering are
directly accessible as stochastic processes. Another usage of stochastic modelling
is to generate ensembles of realizations of the model. This facilitates the analysis
of model uncertainty quantification for different low-resolution computational
simulations and their usage to approximate the true state of the fluid, instead of
using a single high-resolution numerical simulation.

Some stochastic schemes have been proposed in the literature by considering
a variety of ad-hoc perturbations. However, a principled approach is desirable.
The formulation of stochastic dynamical systems based on physical principles
has recently been proposed in various settings. For a review and classification of
approaches to stochastic parameterisation based on physical principles, see [4]. The
present work treats two additional new approaches. The first one, called stochastic
advection by Lie transport (SALT) relies on the variational principle for fluid
dynamics [16]. The second one, called modelling under location uncertainty (LU) is
derived from Newton’s principle [23]. Both frameworks introduce stochasticity into
the Lagrangian specification of the flow field, rather than directly into the Eulerian
frame.

In the deterministic case, it is known that three-dimensional fluid flows may
trigger a cascade of dynamics across multiple length and time scales. This mul-
tiscale behavior poses considerable challenges in the computational simulation
using standard Navier-Stokes equations (see e.g. [7], [24], [5]). When modelling
turbulence numerically, specialised discretisation methods are needed to decompose
the underlying partial differential equations into a very large number of ordinary
differential equations. Alternative approaches have been introduced where the
Navier-Stokes dynamics in the Fourier space is mimicked using a finite number of
variables, say .u1, u2, . . . , uN . The Fourier space is divided into N shells, and each
shell .si comprises the set of wave vectors .s with magnitude .|s| ∈ (s02i , s02i+1).
Each .ui satisfies an ODE and it represents the magnitude of the velocity field
on a length scale of .s−1

i ([15], [7]). The quadratic nonlinearity in the Navier-
Stokes equations produces triads of interacting vector Fourier modes within each
shell. Shell models involving multiple triads have had considerable success in
modelling energy and helicity cascades, as well as modelling intermittency in
chaotic dynamical systems [6, 10, 9]. Simplified shell models with only a few triads
date back to the 1970s and have provided major insight into fluid modal interaction.
Even the dynamical system representation of Euler’s fluid equations on a single triad
has been quite insightful, see e.g. [28, 29].
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More recently, the problem of correctly parameterizing effects of small-scale
physical processes together with the need for probabilistic ensemble forecasting and
uncertainty quantification has led to modern stochastic approaches in the study of
turbulence using reduced order shell models. In this work we will explore reduced
order models for SALT and LU models obtained by projecting onto helical basis
functions [6, 28, 29]. These helical basis functions, defined as eigenfunctions of the
curl operator, enable one to construct reduced order stochastic models of fluid flow
with a simplified nonlinear interaction. As we will see, under projection onto the
basis of helical triad modes, both LU and SALT result in the same reduced order
model and this projected model conserves helicity, but it does not conserve energy.
Because of this coincidence in projecting the SALT and LU models onto the helical
basis, a second reduced order scheme with a strong energy conservation property
inspired by [17] and known as the energy preserving stochastic triad (EST) model
will be proposed for comparison.

While the EST model is not of transport type, it will provide comparison between
two different classes of stochastic dynamical systems. The two classes treated here
are (1) the helicity preserving stochastic triad (HST) (comprising both LU and
SALT on the helical basis) and (2) the energy preserving stochastic triad (EST)
of [17] projected onto the helical basis. The solution behaviour of the HST model
will be compared to that for the EST model for several data assimilation objectives
formulated on the helical triad modes. For classical deterministic models one obtains
a system of ordinary differential equations. However, for stochastic dynamics a set
of stochastic differential equations (SDEs) is obtained [8, 14, 25].

The goal of the data assimilation procedure in this context is twofold: firstly,
it is used to calibrate the uncertainty of the model (the amplitude of the noise).
Secondly, once the calibration is complete, the particle filtering methodology can
be used to reduce the uncertainty. We want the distribution of the fluctuations to
be properly approximated. In the absence of stochasticity, all particles would go
in the same direction and the initial spread would rapidly disappear because of the
hyperbolic character of the model. In the absence of a reasonable spread, the particle
filter methodology will eventually collapse. For this reason, we need to introduce
stochasticity into the system that correctly characterises the fluctuation dynamics. In
particular, we want to find the type of noise amplitude and the stochastic parameters
for which the distribution of the output samples is reasonably uniform.

Structure of the Paper In Sect. 2 we introduce the triad models for incompressible
flows modelled by the Euler equation in its deterministic and stochastic form. To
this end, we introduce the stochastic parametrisation paradigms. Building upon
these models for the 3D Euler equation, we then present reduced order triad models
derived from the original equations. The derivation follows the classical approach
for triad models from the literature, that has been successfully employed in the deter-
ministic case. Our full derivations, complete also for the stochastically parametrised
models, can be found in Appendix 2. The Data Assimilation experiments are carried
out in Sect. 3. We first briefly explain the standard particle filter methodology, and
then in Sect. 3.1 we present the findings of our numerical studies. In particular,
Sect. 3.1 presents the results of the main numerical studies in this work. These are:
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• The model realisations of the stochastic models which we propose in this work
are presented in Sect. 3.1.3 for different realisations of the noise. Further, we
numerically confirm here the physical conservation properties of the models that
motivated their theoretical design.

• The model statistics for a large number of stochastic realisations are presented
in Sect. 3.1.4. Crucially, the evolution of the model statistics in time reveals
differences between the two stochastic models on the level of the individual triad
energies which go beyond the conservation properties. Moreover, we show here
the (in-)stability of either model with respect to large noise parameters.

• In Sect. 3.1.5 we exhibit the results of the data assimilation performed using
the transition kernels derived from the theoretical models developed in this
paper. We show here that using the stochastic transition kernels associated with
our proposed stochastic models improves the particle filtering procedure and
produces efficient ensemble evolutions that are well-suited for data assimilation
purposes.

In Sect. 4 we describe our conclusions on this topic. We conclude the paper
with a number of appendices: in Appendix 1 one can find a list of notations and
standard identities, in Appendix 2 we present a detailed derivation of shell models
(deterministic and stochastic), in Appendix 3 we introduce some supplementary
numerics related to the noise amplitude calibration.

Code Availability The code corresponding to the numerical experiments
in this paper is archived in [22]. The GitHub repository is located at
https://github.com/alobbe/stochastic-triads.

2 Reduced Order Models for Incompressible Fluids

2.1 Reduced Order Models for the 3D Euler Equation

The 3D Euler equations model incompressible inviscid fluid dynamics. These
equations may be written by using the Leray operator .P to project onto the
divergence-free part of its operand as

.

∂v
∂t

= P
(
v × curlv

)

= P
(

δE

δv
× δC

δv

)

with conserved Energy E(v) =
∫

R3

1

2
Pv · vd3x

and conserved helicity C(v) = 1

2

∫

R3
v · curl v d3x

(1)

where .δ/δv represents variational derivative with respect to the fluid velocity .v.
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Following [9, 10] we use a Galerkin expansion in orthogonal vector modes that
are eigenfunctions of the curl operator. Assume the fluid is contained in a periodic
box .D ⊂ R

3 of side length .L > 0. Then the velocity .v and vorticity .ω := ∇ × v
may be expanded in circularly polarised or helical modes .h±(k) exp(ik ·x), with the
wave vectors .k ∈ K := (2π/L)Z3. The modes shall be orthogonal, i.e.

.

∫

D
hsp (p) exp(ip ·x) · [hsq (q) exp(iq ·x)]∗ dx = Cδp,qδsp,sq ; C > 0 const. (2)

The complex vector amplitudes .h±(k) should satisfy .k·h±(k) = 0 and .ik×h±(k) =
±|k|h±(k). A convenient choice of basis for the .h±(k) is then given by

.h±(k) := ν × κ ± iν, with κ := k/k, ν := k × �/|k × �|, � := const,
(3)

for which .|h±(k)|2 := h±(k) · h±(k)∗ = 2 and .h±(k) · h∓(k)∗ = 0.
At this point, one notices the key features of the helical modes .h±(k) exp(ik · x)

which greatly simplifies analysis of modal expansions of the 3D Euler and related
equations, such as 3D Navier-Stokes. Namely, the helical modes .h±(k) exp(ik · x),
are divergence-free eigenfunctions of the curl operator. Specifically,

.∇ · hs(k)eik·x = ik · hs(k)eik·x = 0 (4)

and

.∇ × hs(k)eik·x = ik × hs(k)eik·x = s|k|hs(k)eik·x. (5)

See [9, 10, 28, 29] for more information about how this Galerkin decomposition into
divergence-free eigenfunctions of the curl are used as a standard tool in analysis of
3D solution behaviour of the deterministic Euler fluid equations and Navier-Stokes
fluid equations. In particular, the helical mode expansions in Eqs. (6) comprise the
source of the popular shell models as finite-dimensional expansions of turbulent
fluid dynamics. Thus, this expansion provides a useful framework for studying low-
dimension stochastic models of 3D Navier-Stokes turbulence.

In terms of the basis of helical modes .h±(k) exp(ik ·x), the divergence-free fluid
velocity .v(x, t) and vorticity .ω(x, t) are expressed in [28, 29] in terms of complex
vector amplitudes .u(k, t),� (k, t) ∈ C

3, respectively,

.

v(x, t) :=
∑
p

u(p, t)eip·x :=
∑
p

∑
sp=±

asp (p, t)hsp (p)eip·x ,

ω(x, t) :=
∑
q

� (q, t)eiq·x :=
∑
q

∑
sq=±

sq |q| asq (q, t)hsq (q)eiq·x .

(6)
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Here, the choice

.u(k, t) := a+(k, t)h+(k) + a−(k, t)h−(k) =
∑
sk=±

ask (k, t)hsk (k), (7)

with .a∗
s (k) = as(−k) [29], was made, so that (5) implies

.� (k, t) := |k|
(
a+(k, t)h+(k) − a−(k, t)h−(k)

)
= |k|

∑
sk=±

sk ask (k, t)hsk (k).

(8)

The conservation laws for the Euler fluid kinetic energy and helicity—expressed as
integrals over the spatially periodic box .D—can be evaluated in Fourier space via
Parseval’s theorem, as follows,

.

1

2

∫

D
|v(x, t)|2 d3x=1

2

∑
k

u(k, t) · u∗(k, t)=
∑
k

∑
sk=±

ask (k, t) · a∗
sk

(k, t) ,

∫

D
v(x, t) · curlv(x, t) d3x =

∑
k

u(k, t) · � ∗(k, t)

=
∑
k

∑
sk=±

ksk ask (k, t)a∗
sk

(k, t)hsk (k) · h∗
sk

(k)

= 2
∑
k

∑
sk=±

ksk ask (k, t)a∗
sk

(k, t) .

(9)

Expanding the terms of the Euler equation in curl form (57), we obtain the Euler
equations for the coefficients .ask (k, t). For all .k ∈ K, .sk ∈ {+,−} we have

.∂task (k, t)=−1

4

∑
p+q+k=0

∑
sp,sq

(sp|p|−sq |q|)a∗
sp

(p, t)a∗
sq

(q, t)h∗
sp

(p)×h∗
sq

(q)·h∗
sk

(k).

(10)

For the explicit derivation of Eq. (10) see section “Deterministic Euler” in
Appendix 2.

The elementary interactions in Fourier space take place between triads of wave
vectors such that .k + p + q = 0, as exemplified in Eq. (10) above. There are two
degrees of freedom per wave vector, .(a+, a−), so eight different types of interaction
are allowed according to the value of the triplet .(sk, sp, sq) = (±1,±1,±1).
Consider a fixed triple of wave vectors .k,p,q ∈ K such that .k + p + q =
0 and a fixed triple .sk, sp, sq ∈ {+,−}. This gives rise to three coefficients
.ask (k, t), asp (p, t), asq (q, t), which we compactly summarise into the complex
vector
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.a = (ask , asp , asq ) ∈ C
3 .

The dynamics of .a is determined by the three equations obtained from (10)

.
dask

dt
= g(sp|p| − sq |q|)a∗

sp
a∗
sq

+ R, . (11)

dasp

dt
= g(sq |q| − sk|k|)a∗

sq
a∗
sk

+ R, . (12)

dasq

dt
= g(sk|k| − sp|p|)a∗

sk
a∗
sp

+ R, (13)

We pick out a summand and cycle through .k, p, q

.
dask

dt
= g(sp|p| − sq |q|)a∗

sp
a∗
sq

, . (14)

dasp

dt
= g(sq |q| − sk|k|)a∗

sq
a∗
sk

, . (15)

dasq

dt
= g(sk|k| − sp|p|)a∗

sk
a∗
sp

, (16)

with the constant complex scalar

.g := −1

4
h∗

sp
(p) × h∗

sq
(q) · h∗

sk
(k). (17)

The equations corresponding to the single triad interaction of type .(sk, sp, sq) with
.k + p + q = 0 thus have the complex vector form also derived in [28],

.
da
dt

= ga∗ × Da∗ = g(a × Da)∗, (18)

with the constant diagonal matrix

.D := diag
(
sk|k|, sp|p|, sq |q|). (19)

The form of the factor g defined in (17) above can be calculated from (3) to show that
it depends on the shape and the orientation of the wave-vector triad, but not on its
scale; since the real and imaginary parts of the complex helical vector amplitudes .hsk

are unit vectors. Moreover, .Da can be seen to represent the .(sk, sp, sq) components
of the vorticity vector amplitude .� through Eq. (8) above. Two conservation laws
for real-valued triad energy and helicity follow immediately from Eq. (18), as

.
d

dt
(a · a∗) = 0 and

d

dt
(a · Da∗) = 0 . (20)
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The dynamical system in Eq. (18) is similar to rigid body dynamics, but replaced by
complex angular momentum .(a), complex angular velocity .(Da) and real moment
of inertia .I = D

−1 relating the two complex quantities.1

2.2 Stochastic Parametrizations for the 3D Euler Equation

In the following we introduce a reduced order model for the stochastic parametriza-
tions introduced through the Stochastic Advection by Lie Transport paradigm as
well as the Location Uncertainty paradigm. We explain below the rationale of these
parametrizations:

2.2.1 Modelling Under the Stochastic Advection by Lie Transport
Principle

The SALT equations were derived in [16] using a Stratonovich stochastic version
of Hamilton’s variational principle [18] in combination with Kraichnan’s scalar
turbulence model based on Stratonovich stochastic Lagrangian paths [20]. The
application of Hamilton’s principle with an imposed stochastic Lie transport
constraint implied an Euler-Poincaré equation for the fluid motion [18]. The 3D
SALT Euler equations for divergence-free fluid velocity .v(x, t) are given by

.

dv + ( dxt · ∇)v + vj∇ dxj
t = −∇ dp ,

with dxt = vdt +
∑

i

ξ i (x) ◦ dWi
t .

(21)

As discussed in [16], this motion equation yields a Kelvin-Noether circulation
theorem for the stochastic system

. d
∮

c(xt )

v · dx = −
∮

c(xt )

∇ dp · dx = 0 . (22)

This stochastic Kelvin circulation theorem is has the same form as that for the
deterministic system, except that each line element of the material loop in Kelvin’s
theorem follows the Stratonovich stochastic Lagrangian path, .xt .

The real vectors .ξ i comprise the time-independent noise amplitudes which are
to be determined from data assimilation. The .Wi are independent (uni-dimensional)
standard Brownian motions and .◦ denotes stochastic integration in the Stratonovich
sense.2 The curl form of the SALT Euler motion equation in (21) is obtained

1 Rigid body dynamics with complex angular momentum has also been discussed previously in
[3].
2 An exposition of Brownian motion, stochastic calculus and the Stratonovich integral is to be
found, for example, in the monograph [19].
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from (56) and given by

. dv − dxt × curlv + ∇(v · dxt ) = −∇ dp. (23)

The motion equation (23) and its curl yielding the SALT vorticity equation implies
a formula for the evolution of the helicity of the flow, .�, defined as

.� :=
∫

D
v · curlv d3x . (24)

Upon applying the divergence theorem, one finds

. d� = −
∫

∂D
n̂ ·

(
(v · curlv) dxt + curlv dp

)
dS . (25)

Thus, in a periodic 3D domain, or in an infinite 3D domain with asymptotically
vanishing boundary conditions, the SALT motion equation in (21) or (23) preserves
the helicity, .�, defined in (24). However, a glance at the SALT motion equation
in (23) informs us that it will not preserve the kinetic energy, since even with the
usual fluid boundary conditions .divv = 0 implies

.
1
2 d‖v‖2L2 :=

∫

D
v · dxt × curlv d3x 	= 0 . (26)

2.2.2 Modeling Under the Location Uncertainty Principle

The Location Uncertainty principle consists in decomposing the flow trajectory
.x : � × R

+ → � over a bounded domain, .� ⊂ R
3

.dxt = v (xt , t) dt + σ (xt , t) dWt (27)

in terms of .v (xt , t), a smooth-in-time component of the (Lagrangian) velocity
and a noise .σ (xt , t) dWt , which has here to be understood in the Itô sense and
that accounts for the unresolved processes. The Wiener process, .Wt is a H -
valued (cylindrical) Brownian motion, where H is the Hilbert space of square
integrable functions. The noise is then properly defined as the application of an
Hilbert-Schmidt symmetric integral kernel .σ tf (x) = ∫

S σ̆ (x, y, t)f (y) dy to
the H -valued cylindrical Wiener process .W as

. (σ tdWt )
i (x) =

∫

S
σ̆ik (x, y, t) dWk

t (y) dy, (28)
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The role of the integrable kernel .σ̆ is to impose a spatial correlation on the small-
scale component. It leads to the covariance tensor .Q

.Qij (x, y, t, s) = E
[
(σ tdWt (x))i (σ tdWs (y))j

]

= δ (t − s) dt
∫

S
σ̆ik (x, z, t) σ̆kj (z, y, s) dz,

of the centered Gaussian process .σ tdWt ∼ N (0,Qdt). The diagonal components
of the covariance tensor per unit of time, referred to as the variance tensor, .a,
is a positive definite matrix defined as .a(x, t)δ(t − t ′)dt = Q(x, x, t, t ′), that
quantifies the strength of the noise and has the dimension of a viscosity in .m2s−1.
The operator Q being compact auto-adjoint positive definite operator on H , it
admits eigenfunctions .ξn (·, t) with (strictly) positive eigenvalues .λn (t) satisfying
.
∑

n∈N λn (t) < +∞. As a consequence, the noise and the variance tensor .a can be
expressed through the spectral representation

.σ tdWt (x) =
∑
n∈N

λ
1/2
n (t) ξn (x, t) dβn. (29)

a (x, t) =
∑
n∈N

λn (t) ξn (x, t) ξ†n (x, t) . (30)

The rate of change of a volume .Vt of the scalar q is given by the stochastic Reynolds
transport theorem, introduced in [23]

.d
∫

Vt

q (x, t) dx =
∫

Vt

{
Dt q + q∇ · [

v
 dt + σ tdWt

]}
(x, t) dx, (31)

with the transport operator

.Dt q = dt q + [
v
 dt + σ t dWt

] ·∇q − 1

2
∇ · (a∇q) dt. (32)

In this formula, the first component of the right-hand side is the increment in time at
a fixed location of the process q, that is .dt q = q (xt , t + dt) − q (xt , t), playing the
role of a derivative in time for a non differentiable process. The effective velocity .v


is defined as

.v
 = v − 1

2
∇ · a + σ ∗

t (∇ · σ t ) , (33)

where the velocity component .vs = 1
2∇ · a results from the noise inhomogeneities.

For incompressible homogeneous noise as considered in this work .v
 = v.
Besides, the diffusion term exactly balances the noise brought by the noise. With
Stratonovich convention and a homogeneous noise the transport operator takes a
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simplified form similar to the material derivative:

.Dt q = dt q + (v dt + σ t ◦ dWt ) ·∇q. (34)

For a divergence free homogeneous noise, the Euler equation, in the LU framework,
can then be defined as:

.dtv + (v dt + σ t ◦ dWt ) ·∇v = −∇dpt , ∇ · v = 0, (35)

where .dpt denotes the pressure composed of a finite variation term and a martingale
pressure term. With the Leray projection, .P, this pressure term can be removed and
we obtain, the inertial form of the Euler equation:

.dtv + P
(
(dxt ·∇)v

) = 0, ∇ · v = 0. (36)

2.3 Triad Model Comparison

The reduced order model for the full-scale 3D SALT Euler and 3D LU Euler for a
single triad interaction equation is obtained by projecting the continuous stochastic
Euler models onto the helical modes, in the same fashion as for the deterministic
equation (18). Therefore, we introduce an additional Stratonovich stochastic term
into the transport velocity in (7) as

. dxt (k, t) := (
a+(k, t)h+ + a−(k, t)h−

)
dt +

∑
i

(
bi+(k)h+ + bi−(k)h−

) ◦ dWi
t ,

(37)

where the .k-dependent complex vector .b(k) := (bsk , bsp , bsq )
T ∈ C

3 represents the
time-independent noise amplitude which is to be determined from data assimilation,
similar to the continuous stochastic models (21). Enumerating the equation for a
single triad then yields, after rearranging using exchange symmetry in .(k,p,q), the
matrix equation

. d

⎡
⎣

ask

asp

asq

⎤
⎦ = g

⎡
⎣

0 −qsqasq pspasp

qsqasq 0 −kskask

−pspasp kskask 0

⎤
⎦

∗ ⎡
⎣

ask dt + bsk ◦ dWt

asp dt + bsp ◦ dWt

asq dt + bsq ◦ dWt

⎤
⎦

∗

. (38)

Upon applying the previous steps for the deterministic case to the stochastic velocity
in (37), the single triad interaction dynamics for the SALT case would emerge as,
cf. Eq. (18),

. da = g
(
a(k, t)dt + b(k) ◦ dWt

)∗ × Da∗ . (39)
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The details of this computation can be found in section “LU Euler” in Appendix 2
for the 3D LU Euler model and in section “SALT Euler” in Appendix 2 for the 3D
SALT Euler model.

Remarkably, the HST equation for triad interaction (39) still preserves the triad
helicity .a · Da∗. Hence we name this model the helicity preserving stochastic triad
(HST) model. Note that in both equations we use as single source of noise (One
Brownian motion drives the entire system).

It is readily checked that the HST triad evolution (39) preserves the helicity. Let’s
have a look at the diffusion coefficients.

.a∗ × Db =
⎡
⎢⎣

a∗
psqqbq − a∗

qsppbp

a∗
qskkbk − a∗

k sqqbq

a∗
k sppbp − a∗

pskkbk

⎤
⎥⎦ , b × Da∗ =

⎡
⎢⎣

bpsqqa∗
q − bqsppa∗

p

bqskka∗
k − bksqqa∗

q

bksppa∗
p − bpskka∗

k

⎤
⎥⎦ .

(40)

Taking the difference

.a∗ × Db − b × Da∗ =
⎡
⎢⎣

a∗
p(sqq + spp)bq − a∗

q(spp + sqq)bp

a∗
q(skk + sqq)bk − a∗

k (sqq + skk)bq

a∗
k (spp + skk)bp − a∗

p(skk + spp)bk

⎤
⎥⎦ . (41)

Writing .ρ := TrD we get

.a∗ × Db − b × Da∗ =
⎡
⎢⎣

a∗
p(ρ − skk)bq − a∗

q(ρ − skk)bp

a∗
q(ρ − spp)bk − a∗

k (ρ − spp)bq

a∗
k (ρ − sqq)bp − a∗

p(ρ − sqq)bk

⎤
⎥⎦ . (42)

So that the difference term becomes

.a∗ × Db − b × Da∗ = (ρ Id−D)(a × b)∗. (43)

Since the projections of the LU and SALT models onto a single triad are
indistinguishable, we introduce a different model that conserves energy on a single
triad to enable a comparison between energy conserving and helicity conserving
models.

Energy-Preserving Stochastic Triad (EST) Model We introduce below a mod-
ified version of the HST triad equation (39) that introduces stochasticity into the
vorticity instead of into the transport velocity and thereby conserves the energy.
This is inspired by the full-scale model introduced in [17]. The reduced model is as
follows

. da = − ga∗ × D

(
a(k, t) dt + b(k) ◦ dWt

)∗
. (44)
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We call this model the energy preserving stochastic triad (EST). Written in matrix
form Eq. (44) becomes

. d

⎡
⎣

ask

asp

asq

⎤
⎦ = g

⎡
⎣

0 −asq asp

asq 0 −ask

−asp ask 0

⎤
⎦

∗ ⎡
⎣

kak

(
ask dt + bsk (k) ◦ dWt

)
psp

(
asp dt + bsp (p) ◦ dWt

)
qsq

(
asq dt + bsq (q) ◦ dWt

)

⎤
⎦

∗

. (45)

The exchange symmetry between the two models HST and EST in the placement
of the noise in Eqs. (39) and (44) is apparent already in the exchange symmetry
between velocity and vorticity in Euler’s fluid equations (1).

Deviation from the Conservation Laws We can write the equations for the
deviation from the conservation laws, which is present in both models. The SALT
model deviates from the energy conservation by

. dtEHST = gb · (Da∗ × a∗) ◦ dWt (46)

whereas the LU model deviates from the helicity conservation by

. dtHEST = gDb · (Da∗ × a∗) ◦ dWt. (47)

This is seen, since, to get the energy we dot the HST equation with .a∗ and to get
helicity we dot the EST equation with .Da∗ and use the standard identities

.a∗ · (b × Da∗) = b · (Da∗ × a∗). (48)

Da∗ · (a∗ × Db) = Db · (Da∗ × a∗). (49)

Therefore, .b respects the right scaling and no further scale adjustments between the
SALT and LU noise scaling need to be performed in order to compare the models.

3 Data Assimilation Comparison

In this section, we perform a comparative study of the two reduced order models
(HST and EST) introduced above by using data assimilation tools. The particular
methodology that we make use of is that of particle filters. We will first briefly
explain the particle filtering methodology in a generic framework:

Let X and Z be two processes defined on a given probability space .(�,F ,P).
The process X is usually called the signal process or the truth and Z is the
observation process. In this paper, X is the pathwise solution of a (deterministic)
shell model. The pair of processes .(X,Z) forms the basis of the nonlinear
filtering problem which consists in finding the best approximation of the posterior
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distribution of the signal .Xt given the observations .Z1, Z2, . . . , Ztn .
3 The posterior

distribution of the signal at time t is denoted by .πt . We let .dX be the dimension
of the state space and .dZ be the dimension of the observation space. This
mixed continuous-discrete time framework can be embedded into a fully discrete
framework, whereby one is interested in computing the conditional probability law
of the signal at the time corresponding to the observation time. in other words
one wants to compute the conditional distribution .πtn of .X(tn) given the data
.Z(t1), Z(t2), . . . , Z(tn). The process X is assumed to be a Markov process, and
we will denote by .Kn its transition kernel, that is

.Kn : RdX × B(RdX) → [0, 1], Kn(x, B) = P(Xtn ∈ B|Xtn−1 = x) (50)

for any Borel measurable set .B ∈ B(RdX) and .x ∈ R
dX . The process Z models

noisy measurements of the truth, using the so-called observation operator .H :
R

dX → R
dZ :

.Zn = H (Xtn) + Vn (51)

where .{Vn}n≥0 are independent identically distributed random variables that rep-
resent the measurement noise and .H is a Borel-measurable function. In this
paper we will assume that .{Vn}n≥0 have standard normal distributions, but the
same methodology can be applied to more general distributions. Observations are
incorporated into the system at assimilation times. The following recursion formula
holds (see [2])

.πn = gn 
 πn−1Kn (52)

where by ‘.
’ we denoted the projective product (see e.g. Definition 10.4 in [2]).
In the following, we compare approximations of the posterior distribution of

the signal using particle filters. These are sequential Monte Carlo methods which
generate approximations of the posterior distribution .πt using sets of particles. That
is, they generate approximations that are (random) measures of the form

.πn ≈
∑

�

w�
nδ(x

�
n),

where .δ is the Dirac delta distribution, .w1
t ,w

2
t , . . . are the weights of the particles

and .x1
t , x2

t , . . . are their corresponding positions. Particle filters are used to make
inferences about the signal process by using Bayes’ theorem, the time-evolution
induced by the signal X, and the observation process Z.

3 For a mathematical introduction on the subject, see e.g. [2].
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In a standard particle filter, the particles evolve between assimilation times
according to the law of the signal. As we explain below, at each assimilation time
the observation is incorporated into the system through the likelihood function:

.g
zt
t : RdX→R+, g

zt
t (x)= gt (zt−H (x)) such that P(Zt∈dzt |Xt = x)= g

zt
t (x)dzt

(53)

and all particles are weighted depending on the likelihood of their corresponding
position, given the observation. More precisely, the particle .� is given the weight
.wl

n = g
Zn
n (x�). Heuristically, the particle weight measures how close the particle

trajectory is to the signal trajectory. A selection procedure is then applied to the set
of weighted particles. Particles with higher conditional likelihood (guided by the
observation) have higher weights and will be multiplied, while those which have
small likelihoods will be eliminated. For the basic particle filter, this is done by
sampling with replacement from the population of particles, with corresponding
probabilities proportional to their weights.

A Monte Carlo implementation of the transition kernel of the signal may not
always yield good approximations. In many situations one replaces the original
transition kernel with likelihood informed importance proposals, leading to much
better approximations. One situation when this is necessary is when the original
process is actually deterministic (aside for the initial position which is assumed to
be random). This is the case in our paper.

To overcome the collapse of the particle filter when using deterministic transition
kernels, one can use a Markov Chain Monte Carlo procedure that leaves the
deterministic dynamics invariant. This procedure can be costly and might not always
introduce enough spread into the sample. In this paper, we propose a different
approach, which we illustrate numerically in Sect. 3.1.2 below. In particular,
we propose two different transition kernels based on the physical conservation
properties:

• The transition kernel associated with the HST model equation (38). We will
denote this transition kernel by .KHST. As we have explained above, this transition
kernel preserves the helicity of the system.

• The transition kernel associated with the triad model equation (45) we will denote
this transition kernel by .KEST. As we have explained above, this transition kernel
preserves the energy of the system.

3.1 Numerical Studies

3.1.1 Numerical Implementation

The models are discretised using the stochastic SSPRK3 scheme which is docu-
mented, for example, in [11]. In our specific case, for instance, the HST model is
discretised as
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.qn
1 = an + g(a∗

n × Da∗
n)t + g(b × Da∗

n)W

qn
2 = (3/4)an + (1/4)(qn

1 + g((qn
1)

∗ × D(qn
1)

∗)t + g(b × D(qn
1)

∗)W)

an+1 = (1/3)an + (2/3)(qn
2 + g((qn

2)
∗ × D(qn

2)
∗)t + g(b × D(qn

2)
∗)W)

where .t denotes the timestep and .W the increment of the driving Brownian
motion. Further, .an is the approximate complex vector amplitude at time .t =
nt . The EST model is discretised completely analogously. For the numerical
simulations we chose the following triad throughout. We set

.k = [1, 0, 0], p = [0,−1, 1], q = [−1, 1,−1], (54)

with parities .sk = 1, sp = −1, sq = −1 and the initial value .a0 = 1√
3
[1, 1, 1]. We

set the parameter .� = [1, 1, 1] and used a time stepsize of .t = 0.0005.

3.1.2 Data Assimilation for the Deterministic Model

We illustrate the failure of the particle filter with deterministic transition kernel
in Fig. 1. In this case, the particle filtering is performed for an ensemble of
.n = 25 particles evolving according to the deterministic triad dynamics. The initial
ensemble is spread around the initial value .a0 of the signal according to a Gaussian
distribution with standard deviation .1/

√
600 and, in particular, does not contain

the true initial point. Data assimilation is performed every 10 time units and the
observations are taken from the modal energies of the truth with an observation
error .η distributed as .η ∼ N (0,C) with covariance .C = diag(0.0052, 0.052, 0.052).
We observe that both the bias and the RMSE keep increasing with time to values
much larger than the observation error. Moreover, the number of distinct particles
decreases rapidly: after 30 steps, a single particle remains that is not the true particle
since the true particle was not part of the initial cloud. The particle filter does not
work.

3.1.3 Reduced Order Model Realisations

The deterministic model in Fig. 1a exhibits continually oscillating triad amplitudes.
Plotted are the modal energies. Writing .a = [ak, ap, aq ] we call the real value .aka∗

k

the energy of mode k. Similarly for the two other modes.
We simulate the model realisations for different noise scenarios. We simulate

the effect of noise in each single mode. Let the noise amplitude vector be .b =
[bk, bp, bq ]. Then we simulate the two models for .b = [bk = 0.1, bp = 0, bq =
0], .b = [bk = 0, bp = 0.1, bq = 0], and .b = [bk = 0, bp = 0, bq = 0.1].
The trajectories of the modal energies for .n = 20 realisations of the driving noise
for each scenario are shown in Fig. 2. We also simulate the case of full noise for
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Fig. 1 Deterministic Triad Model. The horizontal axis shows time. (a) Evolution of the modal
energies (colored lines) as well as the total energy (dashed line) and helicity (dash-dotted line). The
deterministic model exhibits continually oscillating modal energies. The simulation also confirms
the conservation of energy and helicity. (b–e) Data assimilation for the deterministic model using
particle filter. (b) Evolution of the energy of mode .p of the signal (grey line) and evolution of the
energy of mode .p for the particle ensemble (blue lines). Noisy observations (black stars) are made
and assimilated every 10 time units. (c) The number of unique particle positions in the filtering
ensemble. (d) The bias of the particle ensemble wrt. the observations. (e) The RMSE of the particle
ensemble wrt. the observations

Fig. 2 Model realisations for both stochastic triad models. Plotted are the modal energies (colored
lines), total energy (black line) and helicity (grey line). The respective thick lines are the ensemble
means, and the thin lines represent the different stochastic realisations. (a+ e) The noise coefficient
.b = [0.1, 0, 0]. (b+ f) The noise coefficient .b = [0, 0.1, 0]. (c+g) The noise coefficient .b =
[0, 0, 0.1]. (d+h) The noise coefficient .b = [0.1, 0.05, 0.01]
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Fig. 3 Evolution of statistical moments of the modal energies for both stochastic models in the full
noise case. The statistics are computed pointwise in time from an ensemble of 1000 realisations up
to a final time of 150. (a+ e) Ensemble mean. (b+ f) Ensemble standard deviation. (c+ g) Ensemble
skew. (d+h) Ensemble kurtosis

the noise amplitude vector .b = [bk = 0.1, bp = 0.05, bq = 0.01] which was
calibrated to the data assimilation objective using the procedure explained in section
“Calibration of the Noise Amplitude” in Appendix 3. The ensemble of .n = 20
realisations of the driving noise in the full noise case is depicted in Fig. 2d and h.
In all cases, it can be observed that the mean energy amplitudes of the modes are
dampened in both stochastic models. Furthermore, we can experimentally verify the
conservation of triad energy for the EST model and the conservation of triad helicity
for the HST model.

3.1.4 Model Statistics

Figure 3 shows various statistics of the generated ensembles of .n = 1000 particles
for the HST and EST triad models in the full noise case introduced above. We plot
the ensemble mean, standard deviation, skew, and kurtosis.

The effect of large noise coefficients is exemplified in Fig. 4. We observe that
the HST model explodes whereas the EST model is more tolerant to large noise
coefficients, and even in the extreme case, does not become unstable in the mean.
The ensemble means are computed from .n = 500 realisations, using the noise
coefficient .b = [0.0, 1.0, 0.0]. Moreover, to stress the EST model, we also ran the
same experiment with a noise coefficient of .b = [0.0, 10.0, 0.0] for the EST model
alone.

The mean ensemble for a large number of particles, .n = 20,000, is shown in
Fig. 5. We can observe that, compared to Fig. 3a and e the oscillations after time 40
are reduced for a very large number of particles. Hence, we believe that the system
stabilizes in the mean to stationary modal energies as the limiting effect of the noise.
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Fig. 4 The effect of large noise coefficients on the mean. Evolution of the mean modal energies
(colored lines), mean total energy (black), and mean helicity (grey) for the HST (a) and EST (b)
model with noise coefficient .b = [0, 1, 0]. (c) Evolution of the mean modal energies, mean total
energy, and mean helicity for the EST model with the strong noise coefficient .b = [0, 10, 0]

Fig. 5 Evolution of mean modal energies for a very large number of realisations for the EST (a)
and HST (b) models. The mean is computed from .20,000 particles in the full noise case

3.1.5 Data Assimilation

Using the two stochastic models in the full noise case described above, we perform
the data assimilation tests using the following framework:

The signal process (the truth) is given by the deterministic triad model. The
observations are the modal energies of the deterministic model, observed every 10
time units, and perturbed by noise of the form

.η ∼ N (0,C), (55)

where the covariance matrix .C ∈ R
3 is chosen to be the diagonal matrix .C =

diag(0.0052, 0.052, 0.052).
We use the sequential importance resampling (SIR) particle filter to assimilate

the periodically observed signal process under the influence of observation noise.
The particles evolve according to the stochastic triad models. Figures 6 and 7 show
the results of filtering the ensemble of .n = 100 particles of the EST and HST triad
models, respectively. The ensembles are assessed in terms of the bias and RMSE
statistics. We analyse the comparison details below:
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Fig. 6 Filtering experiment for EST model using SIR particle filter. (a–c) Ensemble evolution for
100 particles in mode k (a, red), p (b, blue), and q (c, green). The signal (grey) is the deterministic
model and the observations (black stars) are noisy and taken and assimilated every 10 time units.
(d–f) Bias of the filtering ensemble. (g–h) RMSE of the filtering ensemble

Mode k

This is the least energetic of all the modes (hence the reason why we observe it with
the least amount of measurement noise). The cloud of particles is well placed around
the truth even with the small sample. The bias remains small for both the HST
and the EST versions and it reduces significantly when observations are assimilated
more frequently (see Fig. 9 in Appendix 3) as well as when we use a large number
(500) of particles (see Fig. 10 in Appendix 3). The RMSE remains small in all cases
and decreases (though not substantially) when the DA step is small.

Modes p and q

These are the two energetic modes of the system. We used here a measurement
noise that is one order of magnitude larger. Despite this, the results remain equally
good. The cloud of particles provide a good envelope for the truth at all times.
This validates the choice of the stochasticity: the uncertainty is properly modelled.
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Fig. 7 Filtering experiment for HST model using SIR particle filter. (a–c) Ensemble evolution for
100 particles in mode k (a, red), p (b, blue), and q (c, green). The signal (grey) is the deterministic
model and the observations (black stars) are noisy and taken and assimilated every 10 time units.
(d–f) Bias of the filtering ensemble. (g–h) RMSE of the filtering ensemble

For both models the bias can become very large, reaching .30% of the size of the
oscillations for the HST model and .25% of the size of the oscillations for the EST
model. As expected, it is drastically reduced when observations are assimilated more
frequently. The RMSE for mode p is also large but substantially smaller for mode q.
The addition of more intermediate DA steps or more particles has a less pronounced
effect for the q mode.

Remark 2 We record the Effective Sample Size (ESS) for a typical run (for both
EST and HST) in Fig. 11. As usual, the ESS is computed just before the application
of the resampling procedure. The ESS is seen to decay dramatically from 100 down
to single digits numbers in most instances in time.

Remark 3 We record the results over 10 independent runs of the filtering experi-
ment for the EST model with 500 ensemble members in Fig. 12. More precisely, in
graphs 12a, b and c each, we plot the mean across the 10 independent filtering runs
together with the evolution of the signal and the individual ensemble means for each
mode. The mean bias as well as the envelope obtained from the independent runs
are shown in graphs 12d, e and f. The same is shown for the RMSE in graphs 12g,
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h and i. Compared with a single run of the same experiment reported in Fig. 10
we observe the approximations are now near perfect (the statistical error has been
drastically reduced).

4 Conclusions

The introduction of stochasticity into the deterministic triad models leads to two new
stochastic models. Stochasticity is introduced in a principled way (rather than ad-
hoc). It starts with a full scale fluid dynamic model which is randomly perturbed. At
the full scale, the stochastic parametrisation models the small-scale effects in fluid
dynamics modelling. In particular, it efficiently captures the high-frequency small-
scale dynamics and correctly correlates it with the slow, large-scale fluid motion.
In addition, it is constrained to conserve either the helicity or the kinetic energy
of the system. This inspires two different stochastic triad models of Euler type
which we compare using data assimilation procedures based on particle filtering.
The methodology we employ can be used as a benchmark when analysing new types
of stochastic parametrisations: ours is the first study that assesses the efficiency of
stochastic parametrisations from a data assimilation perspective.

The introduction of stochasticity ensures that the correct spread (one that
preserves the physical properties of the system) is introduced in the ensemble of
particles. In its absence, the particle filter degenerates quite rapidly: after a few
DA steps, a single particle survives the culling procedure which does offer a good
approximation of the truth. A purely deterministic transition kernel does not work,
generating a rapid degeneracy of the particle filter.

The two stochastic systems (one which preserves helicity and the other one
which preserves energy) are analysed using a standard particle filter. There is no
need for additional procedures (such as tempering, nudging, or jittering). They
perform equally well from the viewpoint of DA: both the RMSE and the bias are
drastically reduced and stabilised when the noise is carefully calibrated. The two
different stochastic kernels require different noise calibrations in order to perform
well in similar data assimilation scenarios. This is somehow expected, given that the
underlying stochastic parametrisations preserve different physical quantities.

Appendix 1: Notation and Basic Identities

Notation

In this work we use the following notation. We write .Z, .R and .C for the sets
of integers, real numbers and complex numbers, respectively. Boldface letters
denote three-dimensional complex vectors. For two complex vectors .a and .b with
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components .aj and .bj , their dot product is denoted by

.a · b =
3∑

j=1

ajbj = ajbj ∈ C.

This paper uses the Einstein convention of summing over repeated indices. The
norm of the complex vector .a is defined as

.|a| = √
a · a∗ =

√
aja

∗
j ≥ 0,

with the superscript symbol .
∗ denoting complex conjugation. Further, the cross

product of two vectors .a and .b is given by

.a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) ∈ C
3.

The gradient of a scalar field .φ : D ⊆ R
3 → C at a point .x ∈ D is denoted by

.∇φ(x) = (
∂1φ(x), ∂2φ(x), ∂3φ(x)

) ∈ C
3.

The divergence of a vector field .ψ : D ⊆ R
3 → C

3 with components .ψj at a point
.x ∈ D is defined as

.∇ · ψ(x) = ∂1ψ1(x) + ∂2ψ2(x) + ∂3ψ3(x) = ∂jψj (x) ∈ C

and the curl of .ψ at .x is given by

.∇ × ψ(x) = (
∂2ψ3(x) − ∂3ψ2(x), ∂3ψ1(x) − ∂1ψ3(x), ∂1ψ2(x) − ∂2ψ1(x)

) ∈ C
3.

Vector Identities

For three vectors .a, .b and .c, we have the following algebraic vector identities

.a · (b × c) = b · (c × a) = c · (a × b),

a × (b × c) = (a · c)b − (a · b)c,

(a × b) · (c × d) = (a · c)(b · d) − (b · c)(a · d),

a × a = 0.

Moreover, we have the vector calculus identity

.(a · ∇)b + bj∇aj = −a × (∇ × b) + ∇(a · b). (56)
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Appendix 2: Derivation of Triad Models

Deterministic Euler

We compute the projection of the terms corresponding to the deterministic Euler
vorticity equation in curl form:

.∂tv − v × (∇ × v) + 1
2∇|v|2 = −∇p. (57)

onto the helical basis. For the time-derivative we get

.

∫

D
∂tv(x, t) · h∗

sk
(k)e−ik·x dx =

∑
p

∑
sp

∂tasp (p, t)hsp (p) · h∗
sk

(k)

∫

D
ei(p−k)·x dx

= L3
∑
sp

∂tasp (k, t)hsp (k) · h∗
sk

(k)

= L3∂task (k, t)hsk (k) · h∗
sk

(k)

= 2L3∂task (k, t).

The vorticity term gives

.

∫

D
(v(x, t) × ω(x, t)) · h∗

sk
(k)e−ik·x dx

=
∑
p,q

∑
sp,sq

asp (p, t)sq |q|asq (q, t)hsp (p) × hsq (q) · h∗
sk

(k)

∫

D
ei(p+q−k)·x dx

= L3
∑

p+q+k=0

∑
sp,sq

a∗
sp

(p, t)sq |q|a∗
sq

(q, t)h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k).

(58)

Note that we can write (58) in a form which is symmetric in .p and .q since, renaming
the indices,

.

∑
p+q+k=0

∑
sp,sq

a∗
sp

(p, t)sq |q|a∗
sq

(q, t)h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k)

=
∑

p+q+k=0

∑
sp,sq

a∗
sq

(q, t)sp|p|a∗
sp

(p, t)h∗
sq

(q) × h∗
sp

(p) · h∗
sk

(k)

= −
∑

p+q+k=0

∑
sp,sq

a∗
sq

(q, t)sp|p|a∗
sp

(p, t)h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k).
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Therefore,

.

∫

D
(v(x, t) × ω(x, t)) · h∗

sk
(k)e−ik·x dx. (59)

= L3

2

∑
p+q+k=0

∑
sp,sq

(sq |q| − sp|p|)a∗
sp

(p, t)a∗
sq

(q, t)h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k).

(60)

Moreover, the gradient terms in (57) vanish upon expansion into helical modes.
Thus, the Euler equation (57) in helical basis becomes

.∂task (k, t)=−1

4

∑
p+q+k=0

∑
sp,sq

(sp|p|−sq |q|)a∗
sp

(p, t)a∗
sq

(q, t)h∗
sp

(p)×h∗
sq

(q)·h∗
sk

(k).

SALT Euler

We expand the 3D SALT Navier-Stokes equation (23) using (6) and (37). Assume
.bs(−p) = b∗

s (p).

.

∫

D
dv(x, t) · h∗

sk
(k)e−ik·x dx =

∑
p

∑
sp

dasp (p, t)hsp (p) · h∗
sk

(k)

∫

D
ei(p−k)·x dx

= 2L3dask (k, t)

And

.

∫

D
dxt (x, t) × ω(x, t) · h∗

sk
(k)e−ik·x dx

=
∑
p,q

∑
sp,sq

[
asp (p, t)dt + bsp (p) ◦ dWt

]
sq |q|asq (q, t)hsp (p)

× hsq (q) · h∗
sk

(k)

∫

D
ei(p+q−k)·x dx

= L3
∑

p+q+k=0

∑
sp,sq

[
a∗
sp

(p, t)dt + b∗
sp

(p) ◦ dWt

]
sq |q|a∗

sq
(q, t)h∗

sp
(p)

× h∗
sq

(q) · h∗
sk

(k).

Renaming the indices, we can write
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.L3
∑

p+q+k=0

∑
sp,sq

[
a∗
sp

(p, t)dt + b∗
sp

(p) ◦ dWt

]
sq |q|a∗

sq
(q, t)h∗

sp
(p) × h∗

sq
(q) · h∗

sk
(k)

=L3
∑

p+q+k=0

∑
sp,sq

[
a∗
sq

(q, t)dt+b∗
sq

(q) ◦ dWt

]
sp|p|a∗

sp
(p, t)h∗

sq
(q) × h∗

sp
(p) · h∗

sk
(k)

=−L3
∑

p+q+k=0

∑
sp,sq

[
a∗
sq

(q, t)dt+b∗
sq

(q) ◦ dWt

]
sp|p|a∗

sp
(p, t)h∗

sp
(p) × h∗

sq
(q) · h∗

sk
(k).

Thus, we arrive at

.

∫

D
dxt (x, t) × ω(x, t) · h∗

sk
(k)e−ik·x dx

= L3

2

∑
p+q+k=0

∑
sp,sq

[
(sq |q|b∗

sp
(p) ◦ dWta

∗
sq

(q, t) − sp|p|b∗
sq

(q) ◦ dWta
∗
sp

(p, t))

+ (a∗
sp

(p, t)dtsq |q|a∗
sq

(q, t) − a∗
sq

(q, t)dtsp|p|a∗
sp

(p, t))

]
h∗

sp
(p) × h∗

sq
(q) · h∗

sk
(k).

Therefore,

.dask (k, t) = 1

4

∑

p+q+k=0

∑
sp,sq

[
(sq |q|b∗

sp
(p) ◦ dWta

∗
sq

(q, t) − sp|p|b∗
sq

(q) ◦ dWta
∗
sp

(p, t))

+ (a∗
sp

(p, t)dtsq |q|a∗
sq

(q, t) − a∗
sq

(q, t)dtsp|p|a∗
sp

(p, t))

]
h∗
sp

(p) × h∗
sq

(q) · h∗
sk

(k).

LU Euler

Written in terms of the SALT model, the LU model is

. dv + dxt · ∇v + vj∇ dxj
t − vj∇(ξ ◦ dWt)

j = −∇ dp.

Expanding the additional term gives

.∇(ξ ◦ dWt)
j = ∇

∑
q

(b±(q)h±(q)eiq·x ◦ dWt)
j =

∑
q

iqb±(q)hj
±(q)eiq·x ◦ dWt.
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Thus we get

.vj∇(ξ ◦ dWt)
j =

∑
p,q

∑
sp,sq

asp (p, t)hj
sp (p)iqbsq (q)hj

sq (q)ei(p+q)·x ◦ dWt.

Now projecting and renaming, we have

.

∫

D
vj∇(ξ ◦ dWt)

j · a∗
sk

(k, t)h∗
sk

(k)e−ik·x dx =

=
∑
p,q

∑
sp,sq

a∗
sk

(k, t)asp (p, t)[bsq (q) ◦ dWt ](iq · h∗
sk

(k))(hsp (p) · hsq (q))

∫

D
e(p+q−k)·x dx

= L3
∑

p+q+k=0

∑
sp,sq

a∗
sk

(k, t)a∗
sp

(p, t)[b∗
sq

(q) ◦ dWt ](−iq · h∗
sk

(k))(h∗
sp

(p) · h∗
sq

(q))

= L3
∑

p+q+k=0

∑
sp,sq

(f
pq
k

)∗a∗
sk

(k, t)(a∗
sp

(p, t)[b∗
sq

(q) ◦ dWt ] + a∗
sq

(q, t)[b∗
sp

(p) ◦ dWt ])

with

.f
pq
k = (−i(p + q) · hsk (k))(hsp (p) · hsq (q)).

Note that, due to the triad condition .p + q + k = 0,

.f
pq
k = f

kq
p = f

kp
q = 0

so that the difference term between SALT and LU vanishes in the helical projection
and the two projected models coincide.

Appendix 3: Supplementary Numerics

Calibration of the Noise Amplitude

To calibrate the noise amplitude for the data assimilation experiments, we rely
on two forecast verification metrics. The rank histogram (or Talagrand histogram)
and the continuous ranked probability score (CRPS). We evaluated these for both
models on 64 different noise amplitude vectors. The metrics were recorded by
running the data assimilation/particle filtering experiment described in the main
text for the noise amplitude vectors .b = [bk, bp, bq ] resulting from all possible
combinations of .bk ∈ {0.05, 0.1, 0.2, 0.5}, .bp ∈ {0.025, 0.05, 0.1, 0.2} and .bq ∈
{0.01, 0.02, 0.04, 0.1}. We present the mean CRPS scores for the top 5 tested noise
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Table 1 CRPS scores (lower is better) for the five best—in terms of overall mean CRPS score—
tested noise amplitude vectors .b (first column). The mean CRPS score over the three modal
energies is shown for the EST (second column) and HST (third column) models. The overall mean
CRPS score for the respective noise amplitude is shown in the Mean column (fourth column).
Finally, we provide references to the figures showing the associated rank histograms (last column)

.b EST HST Mean Histograms

.[0.05, 0.025, 0.01] .0.0282 .0.0394 .0.0338 Figure 8a + f

.[0.05, 0.025, 0.02] .0.0338 .0.0392 .0.0365 Figure 8b + g

.[0.10, 0.025, 0.02] .0.0352 .0.0385 .0.0368 Figure 8c + h

.[0.10, 0.05, 0.02] .0.0393 .0.0356 .0.0375 Figure 8d + i

.[0.10, 0.05, 0.01] .0.0363 .0.0409 .0.0386 Figure 8e + j

Fig. 8 Rank histograms for the 5 best noise amplitude vectors in terms of CRPS score (see Table 1)
for the EST and HST models. Each individual graph shows the rank histogram of an ensemble of
15 particles run up to a final time of 1400, with data assimilation performed every 10 time units.
The top histogram in each subfigure represents the ensemble for mode .k, the middle histogram
represents the ensemble for mode .p and the bottom one for mode .q

amplitude vectors in Table 1. The mean is taken across both models. Based on
this calibration, we chose the case .b = [0.10, 0.05, 0.01] for the data assimilation
experiment, as the other ones have inferior rank histograms, so we achieve a good
balance between the visual judgment of rank histograms and the CRPS score
(Fig. 8).

Data Assimilation Verification

See Figs. 9, 10, 11, and 12.
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Fig. 9 Filtering experiment for EST model using SIR particle filter with a small data assimilation
interval of 5 time units. (a–c) Ensemble evolution for 100 particles in mode k (a, red), p (b, blue),
and q (c, green). The signal (grey) is the deterministic model and the observations (black stars)
are noisy and taken and assimilated every 5 time units. (d–f) Bias of the filtering ensemble. (g–h)
RMSE of the filtering ensemble
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Fig. 10 Filtering experiment for ESTmodel using SIR particle filter with a large particle ensemble
of 500 members. (a–c) Ensemble evolution for 500 particles in mode k (a, red), p (b, blue), and q
(c, green). The signal (grey) is the deterministic model and the observations (black stars) are noisy
and taken and assimilated every 5 time units. (d–f) Bias of the filtering ensemble. (g–h) RMSE of
the filtering ensemble

Fig. 11 Typical ESS for the filtering experiments. See Remark 2 in the main text. (a) ESS for EST
experiment. (b) ESS for HST experiment
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Fig. 12 Statistics of the mean ensemble over 10 independent runs of the particle filter with 500
ensemble members for the EST model. See Remark 3 in the main text
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